36 research outputs found

    Asymptotics for moist deep convection I: Refined scalings and self-sustaining updrafts

    Get PDF
    Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein & Majda (TCFD, vol. 20, 525--552, (2006)) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multi-scale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modelling framework for atmospheric flows. Deep narrow updrafts, so-called "hot towers", constitute principal building blocks of larger scale storm systems. They are analysed here in a sample application of the new scaling regime. A single quasi-onedimensional columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy (CAPE), a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity and it is responsible for the generation of self-sustained balanced updrafts. The time dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles

    On nonlinear conservation laws with a nonlocal diffusion term

    Get PDF
    AbstractScalar one-dimensional conservation laws with a nonlocal diffusion term corresponding to a Riesz–Feller differential operator are considered. Solvability results for the Cauchy problem in L∞ are adapted from the case of a fractional derivative with homogeneous symbol. The main interest of this work is the investigation of smooth shock profiles. In the case of a genuinely nonlinear smooth flux function we prove the existence of such travelling waves, which are monotone and satisfy the standard entropy condition. Moreover, the dynamic nonlinear stability of the travelling waves under small perturbations is proven, similarly to the case of the standard diffusive regularisation, by constructing a Lyapunov functional

    Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics

    Full text link
    We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as t→∞t\to\infty

    Global well-posedness for passively transported nonlinear moisture dynamics with phase changes

    Get PDF
    We study a moisture model for warm clouds that has been used by Klein and Majda as a basis for multiscale asymptotic expansions for deep convective phenomena. These moisture balance equations correspond to a bulk microphysics closure in the spirit of Kessler and of Grabowski and Smolarkiewicz, in which water is present in the gaseous state as water vapor and in the liquid phase as cloud water and rain water. It thereby contains closures for the phase changes condensation and evaporation, as well as the processes of autoconversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. Phase changes are associated with enormous amounts of latent heat and therefore provide a strong coupling to the thermodynamic equation. In this work we assume the velocity field to be given and prove rigorously the global existence and uniqueness of uniformly bounded solutions of the moisture model with viscosity, diffusion and heat conduction. To guarantee local well-posedness we first need to establish local existence results for linear parabolic equations, subject to the Robin boundary conditions on the cylindric type of domains under consideration. We then derive a priori estimates, for proving the maximum principle, using the Stampacchia method, as well as the iterative method by Alikakos to obtain uniform boundedness. The evaporation term is of power law type, with an exponent in general less or equal to one and therefore making the proof of uniqueness more challenging. However, these difficulties can be circumvented by introducing new unknowns, which satisfy the required cancellation and monotonicity properties in the source terms

    A conservative reconstruction scheme for the interpolation of extensive quantities in the Lagrangian particle dispersion model FLEXPART

    Get PDF
    Lagrangian particle dispersion models require interpolation of all meteorological input variables to the position in space and time of computational particles. The widely used model FLEXPART uses linear interpolation for this purpose, implying that the discrete input fields contain point values. As this is not the case for precipitation (and other fluxes) which represent cell averages or integrals, a preprocessing scheme is applied which ensures the conservation of the integral quantity with the linear interpolation in FLEXPART, at least for the temporal dimension. However, this mass conservation is not ensured per grid cell, and the scheme thus has undesirable properties such as temporal smoothing of the precipitation rates. Therefore, a new reconstruction algorithm was developed, in two variants. It introduces additional supporting grid points in each time interval and is to be used with a piecewise linear interpolation to reconstruct the precipitation time series in FLEXPART. It fulfils the desired requirements by preserving the integral precipitation in each time interval, guaranteeing continuity at interval boundaries, and maintaining non-negativity. The function values of the reconstruction algorithm at the sub-grid and boundary grid points constitute the degrees of freedom, which can be prescribed in various ways. With the requirements mentioned it was possible to derive a suitable piecewise linear reconstruction. To improve the monotonicity behaviour, two versions of a filter were also developed that form a part of the final algorithm. Currently, the algorithm is meant primarily for the temporal dimension. It was shown to significantly improve the reconstruction of hourly precipitation time series from 3-hourly input data. Preliminary considerations for the extension to additional dimensions are also included as well as suggestions for a range of possible applications beyond the case of precipitation in a Lagrangian particle model

    The Dynamic State Index with Moisture and Phase Changes

    Get PDF
    The dynamic state index (DSI) is a scalar field that combines variational information on the total energy and enstrophy of a flow field with the second law of thermodynamics. Its magnitude is a combined local measure for non-stationarity, diabaticity, and dissipation in the flow, and it has been shown to provide good qualitative indications for the onset and presence of precipitation and the organization of storms. The index has been derived thus far for ideal fluid models only, however, so that one may expect improved and quantitative insights from a revised definition of the quantity that includes more complex aerothermodynamics. The present paper suggests definitions of the DSI for flows of moist air with phase changes and precipitation

    Kinetic modelling of colonies of myxobacteria

    Get PDF
    A new kinetic model for the dynamics of myxobacteria colonies on flat surfaces is derived formally, and first analytical and numerical results are presented. The model is based on the assumption of hard binary collisions of two different types: alignment and reversal. We investigate two different versions: a) realistic rod-shaped bacteria and b) artificial circular shaped bacteria called Maxwellian myxos in reference to the similar simplification of the gas dynamics Boltzmann equation for Maxwellian molecules. The sum of the corresponding collision operators produces relaxation towards nematically aligned equilibria, i.e. two groups of bacteria polarized in opposite directions. For the spatially homogeneous model a global existence and uniqueness result is proved as well as exponential decay to equilibrium for special initial conditions and for Maxwellian myxos. Only partial results are available for the rod-shaped case. These results are illustrated by numerical simulations, and a formal discussion of the macroscopic limit is presented

    Global well-posedness for the primitive equations coupled to nonlinear moisture dynamics with phase changes

    Get PDF
    Funder: John Simon Guggenheim Memorial Foundation; doi: https://doi.org/10.13039/100005851Abstract: In this work we study the global solvability of the primitive equations for the atmosphere coupled to moisture dynamics with phase changes for warm clouds, where water is present in the form of water vapor and in the liquid state as cloud water and rain water. This moisture model contains closures for the phase changes condensation and evaporation, as well as the processes of auto conversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. It has been used by Klein and Majda in [17] and corresponds to a basic form of the bulk microphysics closure in the spirit of Kessler [16] and Grabowski and Smolarkiewicz [12]. The moisture balances are strongly coupled to the thermodynamic equation via the latent heat associated to the phase changes. In [14] we assumed the velocity field to be given and proved rigorously the global existence and uniqueness of uniformly bounded solutions of the moisture balances coupled to the thermodynamic equation. In this paper we present the solvability of a full moist atmospheric flow model, where the moisture model is coupled to the primitive equations of atmospherical dynamics governing the velocity field. For the derivation of a priori estimates for the velocity field we thereby use the ideas of Cao and Titi [6], who succeeded in proving the global solvability of the primitive equations
    corecore